

117 Independent Database
and Cloud Performance

Benchmarks

All the Things Database and Cloud Providers

won’t tell you!

By The benchANT Team

- Database & Cloud Performance Engineering & Consulting–

Introduction – Why Performance Matters!

Welcome to a groundbreaking whitepaper that unveils the untold truths behind database and

cloud performance benchmarks. In an era dominated by data-driven decision making and

cloud adoption, understanding the intricate details of database and infrastructure

performance is crucial for organizations seeking to gain a competitive edge. This whitepaper,

based on real-world project experience, will empower you with valuable, untold insights.

Enter performance benchmarks—a scientific approach to measuring, comparing, and

evaluating the performance of different databases and cloud platforms. These benchmarks

act as a compass, guiding you towards informed decision-making and ensuring optimal

utilization of your resources.

While database vendors and cloud providers entice you with claims of unparalleled

performance and linear scalability, they conveniently omit critical information that could

impact your business's efficiency and cost-effectiveness. This whitepaper is designed to

expose these hidden truths, empowering you with knowledge that will level the playing field.

117 Comprehensive Benchmarks: Empowering You with Real-World Data

Drawing from a vast array of real-world projects, this whitepaper features an astounding 117

independent performance benchmarks. Each benchmark scrutinizes a specific aspect of

database and cloud performance, providing you with practical insights and real-world

examples. These benchmarks cover a wide range of crucial parameters, including latency,

throughput, scalability, costs, and performance/cost ratios.

By leveraging the power of these benchmarks, you can make data-driven decisions that align

with your business goals. Rather than relying on marketing hype or biased vendor claims, you

can understand the inhomogeneity of database and cloud infrastructure products and learn

how to measure what is important.

Knowledge is power, and the insights contained within these benchmarks will equip you with

the information necessary to make intelligent, evidence-based decisions. Embrace

transparency, demand performance, and position your tech stack for the growing amount of

data in the front position.

Let's dive in.

Daniel

Table of Contents
Introduction – Why Performance Matters! .. 1

117 Comprehensive Benchmarks: Empowering You with Real-World Data 2

1. Database Performance – First steps .. 4

1.1. Throughput on the Data Autobahn – Popular NoSQL Databases 5

1.2. Transactional Throughput for Relational Databases .. 6

1.3. Latency – The Real-Time Experience .. 7

1.4. Database Strengths – MongoDB vs Cassandra .. 8

1.5. When scaling matters – MongoDB vs Cassandra... 9

1.6. Looking Beyond the Mainstream – A Positive Example ... 10

1.7. Looking Beyond the Mainstream – A Less Positive Example 11

1.8. Costs? Who is interested in Performance/Costs .. 12

2. The Purpose of Databases – Handling Your Workload .. 13

2.1. Handling Different Workload Types .. 14

2.2. Handling Different Workload Variation - Relational ... 15

2.3. Handling Different Workload Variation - NoSQL ... 16

2.4. A Shift in the Read-Write Ratio for MongoDB .. 17

2.5. A Shift in the Read-Write Ratio for Cassandra... 18

3. The Infrastructure Impact ... 19

Cloud does not equal Cloud .. 19

3.1. Cloud Providers Impacting PostgreSQL Performance .. 20

3.2. Cloud Providers Not Impacting Cassandra ... 21

3.3. Performance Differences of VM Types ... 22

3.4. Price/Performance of ARM Resources for Databases ... 24

3.5. Storage Types Performance Impact ... 25

4. Why Benchmarking Database-as-a-Service? .. 27

DBaaS Performance Does Not Only Depend on the DBMS Technology 27

4.1. MySQL and MariaDB DBaaS: Market Overview ... 28

4.2. MySQL and MariaDB: DBaaS Performance/Cost Comparison 29

4.3. A Document DBaaS Market Comparison .. 30

4.4. Document DBaaS – Also Big Differences for Latency .. 31

4.5. DBaaS vs self-managed .. 32

Conclusion .. 34

Disclaimer ... 37

Version history .. 37

1. Database Performance – First steps

Database performance is a selling point since the rise of database management systems in

1990. There is nearly no database producer who is not doing marketing with words like

“fastest”, “scaling” or “real-time”. Also, nearly every vendor is publishing performance

benchmark reports, done by their own engineering team or third parties.

At benchANT, our mission is to bring independent and reliable performance data for

databases, Database-as-a-Service products, and cloud resources to everyone. Our approach is

based on a scientifically approved benchmarking methodology and toolset and enables

reliable and efficient measurement automation. More information about benchANT and our

benchmarking process is available on our website (https://benchant.com/).

The most important things when doing database benchmarks are:

• Relevance

• Reproducibility

• Fairness

• Verifiability

• Usability

In the following chapters we show you a large amount of highly interesting information for the

most important KPIs for database performance measurement. Based on that data, we explain

why and what is important.

And sometimes, you will see surprising results.

Be curious if the DBMS and Cloud provider can keep their promises!

https://benchant.com/

1.1. Throughput on the Data Autobahn – Popular NoSQL Databases
Data-intense application need to handle not only a huge amount of stored data, but also many

database operations per second to store and read data. This KPI, the so-called Throughput, is

measured in database operations (or transactions) per second.

Let’s compare the throughput of some modern popular NoSQL databases with a simple CRUD

workload when hosted on AWS EC2.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) MongoDB CE v5
b) Apache Cassandra v4
c) Couchbase Server CE v7

Infrastructure AWS EC2

Scaling a) small: m5.large (2 vCPUs, 8 GB RAM, single-node)
b) medium: m5.xlarge with doubled workload threads

Workloads YCSB: 50% read , 50% write, simple operations
(no joins, no aggregations, simple search)

7,564

15,552

12,312

20,871

16,754

29,602

0

5000

10000

15000

20000

25000

30000

MongoDB
small

MongoDB
medium

Cassandra
small

Cassandra
medium

Couchbase
small

Couchbase
medium

Throughput
[ops/s], higher is better

➔ Database technologies show up a wide throughput range: best is twice as high as

last) for same workload.

➔ Scaling-up infrastructure resources rises the ability to handle more operations.

➔ Knowledge of maximum throughput is essential for database management.

1.2. Transactional Throughput for Relational Databases
For relational databases the throughput is often measured in transactions per second/per

hour. Hereby, multiple database operations are bundled into database transactions.

Let’s compare the throughput of some open-source relational databases for a more complex

and transactional workload.

Target Technology Relational databases on Cloud infrastructure

Databases a) PostgreSQL v13
b) MySQL v8
c) Cockroach v21

Infrastructure AWS EC2

Scaling a) small: m5.large (2 vCPUs, 8 GB RAM, single-node)
b) medium: m5.xlarge with doubled workload threads

Workloads Sysbench 1.0: OLTP Mix with non-simple operations, grouped
to transactions, no batch processing

80 89

272

841

65

204

0

100

200

300

400

500

600

700

800

900

MySQL
small

MySQL
medium

PostgreSQL
small

PostgreSQL
medium

CockroachDB
small

CockroachDB
medium

Throughput
[trx/s], higher is better

➔ Database throughput differences exist for relational databases, too.

➔ Far less transactions can be handled for this more complex workload, compared to

the one in the previous chapter.

➔ Workload complexity and characteristics have impact on the throughput

capabilities of database technologies.

1.3. Latency – The Real-Time Experience
While throughput is very important to handle all operations, many applications also need a real-

time experience with low latency. As applications often consist of several layers, the database

latency is only one part of the total latency. Database technologies usually show different

latencies for specific database operations, like writing, reading, updating....

Let’s have a look at the NoSQL scenario from chapter 1.3 but focus on read latency.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) MongoDB CE v5
b) Apache Cassandra v4
c) Couchbase Server CE v7

Infrastructure AWS EC2

Scaling a) small: m5.large (2 vCPUs, 8 GB RAM, single-node)
b) medium: m5.xlarge with doubled workload threads

Workloads YCSB: 50% read, 50% write, simple operations (no joins, no
aggregations, simple search)

2.4 2.6

24.9
26.7

11.6

36.2

0

5

10

15

20

25

30

35

40

MongoDB
small

MongoDB
medium

Cassandra
small

Cassandra
medium

Couchbase
small

Couchbase
medium

Read Latency 95%
[ms], lower is better

➔ The read latency ranking is different compared to the throughput, remember lower

latency is better.

➔ For growing application workload, latency should stay on same level, but not grow.

➔ Read latency 95% means, that 95% of all operations complete faster than this

number.

1.4. Database Strengths – MongoDB vs Cassandra
Already in the previous chapters one can see that databases have specific strengths and that

the workload has an impact on the performance.

Let’s visualize these strengths with three different workload types for read latency.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) MongoDB CE v5
b) Apache Cassandra v4

Infrastructure AWS EC2

Resources 3-node cluster, i3.xlarge (4 vCPUs, 30.6 GB RAM), NVME

Workloads a) YCSB balanced: 50% read, 50% write, simple operations
b) YCSB read-heavy: 80% read, 20% write, simple ops.
c) YCSB write-heavy: 20% read, 80% write, simple ops.

5.3

6.5

4.8

11.2

8.2

12.7

0

2

4

6

8

10

12

14

MongoDB
balanced

MongoDB
read-heavy

MongoDB
write-heavy

Cassandra
balanced

Cassandra
read-heavy

Cassandra
write-heavy

Read Latency 95%
[ms], lower is better

➔ The distribution of the database operations has an impact on the latency for read

operations.

➔ MongoDB shows lowest read latency for write-heavy, Cassandra for read-heavy

workloads.

➔ Measurements tells you something about the strength of databases.

1.5. When scaling matters – MongoDB vs Cassandra
The performance of present workload is one thing, but what will it be in the future? The ability

to scale, as linear as possible, is important for growing applications. A simplified scalability

model based on compute power assumes that the scalability factor is reflected by the

increased compute capacity from the small to large cluster size, i.e. the theoretical throughout

scaling factor is 400% from small to large.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) MongoDB CE v5
b) Apache Cassandra v4

Infrastructure AWS EC2

Resources a) small: 3-node cluster, i3.xlarge, NVMe storage
b) medium: doubled resources/instances
c) large: quadrupled resources/instances

Workloads YCSB balanced: 50% read, 50% write, simple operations (small:
100, medium: 200, large: 400 threads)

12504

23794

38600

23072

39062

64466

0

10000

20000

30000

40000

50000

60000

70000

MongoDB
small

MongoDB
medium

MongoDB
large

Cassandra
small

Cassandra
medium

Cassandra
large

Throughput
[trx/s], higher is better

➔ While resources doubled and quadrupled, MongoDB gained 90% and 200% more

performance.

➔ While resources doubled and quadrupled, Cassandra gained 69% and 180% more

performance.

➔ Scaling is very database specific, but seldom linear, even if marketing claims it.

1.6. Looking Beyond the Mainstream – A Positive Example
While many architects only know the most popular databases, far over 300 database

technologies exist. One of them is ScyllaDB, a relatively new NoSQL database that adopts

many concepts of Apache Cassandra and enhances them with its close-to-the metal design.

It is built specifically for applications that require high throughput and predictable low latency.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) Apache Cassandra v4
b) ScyllaDB v4.5

Infrastructure AWS EC2

Resources a) medium: 3-node cluster, m5.xlarge
b) large: 3-node cluster, m5.2xlarge
c) xlarge: 9-node cluster, m5.2xlarge

Workloads YCSB balanced: 50% read, 50% write, simple operations
(medium: 100, large: 200, xlarge: 600 threads)

25254

62163

139171

18646

50621

204405

0

50000

100000

150000

200000

250000

Cassandra
medium

Cassandra
large

Cassandra
xlarge

ScyllaDB
medium

ScyllaDB
large

ScyllaDB
xlarge

Throughput
[trx/s], higher is better

➔ Cassandra has slight performance advantages for medium and large scaling sizes.

➔ ScyllaDB shows its performance strengths for intense and large-scale workloads.

➔ There are some hidden champions out there, they just need to be found.

1.7. Looking Beyond the Mainstream – A Less Positive Example
Among the more than 300 databases, there are of course numerous products that are not yet

100% technically mature and whose performance leaves much to be desired in comparison to

established database solutions.

Target Technology NoSQL databases on Cloud infrastructure

Databases a) MySQL v8
b) CrateDB v4.7

Infrastructure AWS EC2

Resources a) xsmall: single-node, m5.large
b) small: single-node, m5.xlarge

Workloads YCSB: balanced 50% read, 50% write, simple operations

6771

11799

1030

3182

0

2000

4000

6000

8000

10000

12000

14000

MySQL
xsmall

MySQL
small

CrateDB
xsmall

CrateDB
small

Throughput
[ops/s], higher is better

➔ MySQL outperforms CrateDB 6x (xsmall) and 3,7x (small) for a simple CRUD

workload.

➔ CrateDB is a time-series database that should handle simple CRUD workload fast.

But it seems that this workload is not a good match. Better results for CrateDB have

been published here using an analytical workload:

https://benchmark.clickhouse.com/Some technologies need more maturity, before

they can have industrial relevance. Or just are not a good fit for certain workloads.

https://benchmark.clickhouse.com/

1.8. Costs? Who is interested in Performance/Costs?
While techies are looking for performance and scalability, you should never forget the cost

perspective, especially if you want to impress your manager.

Costs per transaction is one of the most important key metrics for businesses.

Target Technology Relational databases on Cloud infrastructure

Databases a) PostgreSQL v13
b) MySQL v8
c) Cockroach v21

Infrastructure AWS EC2

Scaling a) small: m5.large (2 vCPUs, 8 GB RAM, single-node)
b) medium: resources x2, workload x2

Workloads Sysbench 1.0: OLTP Mix with non-simple operations, grouped
to transactions, no batch processing

$1.19

$2.00

$0.35
$0.21

$1.46

$0.87

 $-

 $0.50

 $1.00

 $1.50

 $2.00

 $2.50

MySQL
small

MySQL
medium

PostgreSQL
small

PostgreSQL
medium

CockroachDB
small

CockroachDB
medium

Costs per Transaction
[$ per month / trx/s], lower is better

➔ The costs for a transaction vary from database to database and in the scaling size.

Optimizing the costs per transactions leads to an efficient and successful data

infrastructure.

➔ For a fair cost calculation, it is important to consider all relevant costs, not only the

resource costs (as we have done it here 😉)

➔ Costs are not an important KPI, but Performance per Cost is a real one!

2. The Purpose of Databases – Handling Your Workload

While the first chapter gave us some first insight about some databases and shows the

enormous potential of such performance measurements, it also gave us a hint about one

further benchmarking fact: workload matters.

Every application is unique and has an individual workload. Of course, you can categorize most

applications like ERP, eCommerce shop, IoT application or AI algorithm, but still it is unique

regarding

• the amount of data,

• the data set size,

• the number of (parallel) users,

• the request,

• the distribution of the requests regarding database operations

• the distribution of the requests regarding the specific data sets

• … and many more

And yes, each of these workload specifics has an impact on the performance, the best

database solution for the application and the best database tuning.

In Chapter 2, we provide you with performance data regarding workload variations – form

traditional relational databases to modern database technologies.

Let’s dive in!

2.1. Handling Different Workload Types
MySQL and PostgreSQL are among the most popular databases, used for nearly every

workload, from eCommerce to analytics. The following diagram shows why performance

depends so much on the workload.

Target Technology Relational databases on Cloud infrastructure

Databases a) MySQL v8
b) PostgreSQL v13

Infrastructure AWS EC2

Resources 16 vCPUs, 128GB RAM, NVMe storage

Workloads a) YCSB: load phase, bulk inserts
b) TPC-C: transactional eCommerce, semi-complex queries
c) TPC-H: analytical workload, complex queries

5863

778

198

139712

1793 1544

1

10

100

1000

10000

100000

1000000

MySQL
YCSB

MySQL
TPC-C

MySQL
TPC-H

PostgreSQL
YCSB

PostgreSQL
TPC-C

PostgreSQL
TPC-H

Throughput
[ops/s / ops/h (TPC-H)], higher is better, logarithmic

➔ Different workloads and complexity show different throughput results for same

resources and settings. A logarithmic scale is necessary to present the results

➔ Complex workloads like analytics are usually not measured by ops/s, but per

operation per hour due to long-lasting queries.

➔ Workload understanding and re-modelling is key for useful performance

measurements and optimizing the database layer.

2.2. Handling Different Workload Variation - Relational
Not always are the workloads that different as in the last example, but also simple CRUD

workloads with a shift in the distribution of database operations can lead to different

performance results and showing the strengths and weaknesses of databases.

Target Technology Relational DBMS on Cloud infrastructure

Databases a) PostgreSQL v12
b) MySQL v8

Infrastructure AWS EC2

Resources c6i.2xlarge: 8 vCPUs, 16GB RAM, single node

Workloads a) YCSB eCommerce: 90% read, 10% insert operations
b) YCSB IoT: 80% insert, 20% read operations
c) YCSB SocialMedia: 50% insert, 50% read operations

15589

33983

3371

13897

4110

17408

0

5000

10000

15000

20000

25000

30000

35000

40000

MySQL
eCommerce

PostgreSQL
eCommerce

MySQL
IoT

PostgreSQL
IoT

MySQL
SocialMedia

PostgreSQL
SocialMedia

Throughput
[ops/s], higher is better

➔ While MySQL is good at handling a balanced non-complex eCommerce workload,

the performance for write-heavy IoT workload and the social media collapsed.

➔ The same pattern can also be detected for PostgreSQL, but not with the same

extreme decline. Still, it looks that these workloads are not the sweet-spot of these

databases.

➔ Even `general purpose` databases show strength and weaknesses for specific

workloads. Sometimes dedicated database solutions are a more efficient fit.

2.3. Handling Different Workload Variation - NoSQL
Not always are the workloads that different than in the last example, but also simple CRUD

workloads can lead to different performance results and showing the strengths of databases.

Target Technology NoSQL on Cloud infrastructure

Databases a) MongoDB v4.4
b) Couchbase v7

Infrastructure AWS EC2

Resources c6i.2xlarge: 8 vCPUs, 16GB RAM, 3-node-cluster

Workloads a) YCSB eCommerce: 90% read, 10% insert operations
b) YCSB IoT: 80% insert, 20% read operations
c) YCSB SocialMedia: 50% insert, 50% read operations

52563

39583

14916

40172

23385

56123

0

10000

20000

30000

40000

50000

60000

MongoDB
eCommerce

Couchbase
eCommerce

MongoDB
IoT

Couchbase
IoT

MongoDB
SocialMedia

Couchbase
SocialMedia

Throughput
[ops/s], higher is better

➔ MongoDB shows highly different throughput results regarding the workload

specifications. While the write intense workload is not handled efficiently it looks

more promising for read-intense workloads.

➔ Couchbase’s performance results are not that dependable on the workload, but

even here you can see an increase of 40% throughput for the social media workload.

➔ Even slight changes in workloads can have a significant impact on the resulting

performance of a database. And the strengths of databases are varying a lot.

2.4. A Shift in the Read-Write Ratio for MongoDB
In the last example, the performance sensitivity of MongoDB due to variation in the workload

regarding the read-write-ratio was already visible, here comes an in-depth analysis of this

phenomenon.

It is important to understand, that shifts of the workload due to new features can have an

overall impact on the database performance.

Target Technology NoSQL on Cloud infrastructure

Databases MongoDB v4.4

Infrastructure AWS EC2

Resources m5.large: 2 vCPUs, 8GB RAM, 3-node setup

Workloads YCSB simple CRUD: read-write distribution variable

6523 6813 6593
7153

10147

0

2000

4000

6000

8000

10000

12000

MongoDB
10% read

MongoDB
30% read

MongoDB
50% read

MongoDB
70% read

MongoDB
90% read

Throughput
[ops/s], higher is better

➔ While the read percentage is below 70% the throughput results are nearly on the

same level. Yet, with an increasing ratio of read operations and lower write

operations the possible throughput of MongoDB increases significantly.

➔ Write operations look more performance intensive at MongoDB. This is normal for

nearly any database, but the impact at MongoDB is significantly high with over 50%.

➔ But not only the throughput, also the latency for read and write operations can (and

does) change with workload shifts like these.

2.5. A Shift in the Read-Write Ratio for Cassandra
The same scenarios as above, we also did for Apache Cassandra to find out if more write

operations always deliver lower throughput, due to more cost intense internal operation, or if

this is also database specific.

The results were more than surprising.

Target Technology NoSQL on Cloud infrastructure

Databases Cassandra v4.0

Infrastructure AWS EC2

Resources m5.large: 2 vCPUs, 8GB RAM, 3-node setup

Workloads YCSB: simple CRUD, read-write distribution variable

7826

6985

5874

6909

7811

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Cassandra
10% read

Cassandra
30% read

Cassandra
50% read

Cassandra
70% read

Cassandra
90% read

Throughput
[ops/s], higher is better

➔ Cassandra shows a totally different behavior on the variation of the read-write

distribution compared to MongoDB.

➔ While the balanced 50r/50w workload shows the worst performance, the

performance increases for read intense but also for write intense workloads by

nearly 30%

➔ It is nearly impossible to predict the specific behavior, but performance

measurements can help to identify this easily.

3. The Infrastructure Impact

In the last two chapters, we were digging into database performance and the impact on the

workload on performance, but we never questioned the underlying resources. Which impact

do have

• Different cloud provider

• different VM types

• different storage types

• IOPS

• or self-hosted infrastructure

Cloud does not equal Cloud

If you are assuming that Cloud resources from AWS or Azure, or european cloud providers like

IONOS cloud and Open Telekom Cloud are delivering identical performance for comparable

virtual machines, we will prove you wrong.

While pricing is nearly equal for many cloud providers for comparable resources, the

performance of the technical cloud solution, regarding hardware, software virtualization or

provisioning rules, is extremely divers.

Finding the right resources for your application can increase the performance and especially

the performance per costs significantly.

Let’s dive into some measurements on infrastructure layer.

3.1. Cloud Providers Impacting PostgreSQL Performance
A first good example, how the underlying cloud infrastructure has an impact on the outcoming

performance of the database running on the infrastructure.

Measuring this performance differences is not only important for performance, but even more

for performance per cost comparisons before choosing cloud resources.

Target Technology PostgreSQL on Cloud infrastructure

Databases PostgreSQL

Infrastructure a) AWS EC2
b) MS Azure
c) Alibaba Cloud
d) IONOS Cloud

Resources Single-node, comparable general-purpose VMs with 4
vCPUs and 16 GB RAM, standard SSD storage

Workloads YCSB: 50% read, 50% write, simple operations

19447

8622

21652
20834

0

5000

10000

15000

20000

25000

PostgreSQL
@ AWS

PostgreSQL
@ MS Azure

PostgreSQL
@ Alibaba Cloud

PostgreSQL
@ IONOS Cloud

Throughput
[ops/s], higher is better

➔ The performance of PostgreSQL on Alibaba Cloud is more than 10% better, and on

IONOS Cloud more than 5%, better than on AWS EC2.

➔ The performance on the Microsoft Azure infrastructure is way lower in this example.

You would need significantly higher and more expensive VMs for similar

performance as in the other cases, which is not efficient and unsatisfying.

3.2. Cloud Providers Not Impacting Cassandra
The above example shows an extreme performance impact on PostgreSQL, but this is not

necessarily the same for other databases. This example shows the performance impact for

the same workload and infrastructure resources for Apache Cassandra.

Target Technology Apache Cassandra on Cloud infrastructure

Databases PostgreSQL

Infrastructure a) AWS EC2
b) MS Azure
c) Alibaba Cloud
d) IONOS Cloud

Resources Single-node, comparable general-purpose VMs with 4
vCPUs and 16 GB RAM, standards SSD

Workloads YCSB: 50% read, 50% write, simple operations

20871
21995

20024
18702

0

5000

10000

15000

20000

25000

Cassandra
@ AWS

Cassandra
@ MS Azure

Cassandra
@ Alibaba Cloud

Cassandra
@ IONOS Cloud

Throughput
[ops/s], higher is better

➔ The performance impact of the cloud resources on Cassandra are below 10%.

➔ Only IONOS cloud shows some dropping performance numbers. But on the other

hand, Microsoft Azure shows strongest performance for this scenario.

➔ Some databases are more dependent on the underlying resources and some cloud

resources are not working efficient with some database technologies.

3.3. Performance Differences of VM Types
Beside the differences of Cloud providers, their hardware and virtualization, there are also big

differences in the available Virtual Machine types at one provider.

Is this relevant for the database performance? Sure!

Target Technology MongoDB on Cloud infrastructure

Databases MongoDB v4.4

Infrastructure AWS EC2

Resources a) m5.large: 2 vCPUs, 6 GB RAM
b) m5a.large: 2 vCPUs, 6 GB RAM, AMD
c) m5n.large: 2 vCPUs, 6 GB RAM, network-optimized
d) t3a.large: 2 vCPUs, 6 GB RAM, AMD, burst

Workloads YCSB: simple CRUD, 80% read / 20% writes

7157

5441

7251

5224

0

1000

2000

3000

4000

5000

6000

7000

8000

MongoDB
@ AWS m5.large

MongoDB
@ AWS m5a.large

MongoDB
@ AWS m5n.large

MongoDB
@ AWS t3a.large

Throughput
[ops/s], higher is better

➔ The performance differences of similar VM types of AWS EC2 vary up to 30% for the

MongoDB throughput.

➔ Every database or workload can have different requirements to CPU, RAM or even

network bandwidth, storage or IOPS.

➔ Throughput and costs should always be considered together when selecting the

right cloud resources to find an efficient solution- from technical and business

perspective.

3.4. Price/Performance of ARM Resources for Databases
The number of VM types at public cloud providers are complemented with ARM Graviton

processors since 2021. ARM VMs are usually lower priced due to lower hardware costs.

Yet, do these resources work properly with databases? What’s their price/performance?

Target Technology PostgreSQL on Cloud infrastructure

Databases MongoDB v4.4

Infrastructure AWS EC2

Resources Single-node, ARM Graviton vs. different Intel VMs at two
scaling sizes: 2 vCPUs, 4 GB RAM and 8 vCPUs, 16 GB RAM

Workloads YCSB: eCommerce, simple CRUD, 90% read, 10% write, latest

89
99

199

105

80 84

0

50

100

150

200

250

MongoDB
@AWS

a1.large

MongoDB
@AWS

t3.medium

MongoDB
@AWS

c6i.large

MongoDB
@AWS

a1.2xlarge

MongoDB
@AWS

c5.2xlarge

MongoDB
@AWS

c6i.2xlarge

Throughput / Cost
[ops/s / US-$], higher is better

➔ While the absolute performance (not visible) of the ARM VMs (dark orange) is lower

than the other AWS VMs, their performance per cost ratio is fine, especially for larger

instances. The small c6i instance delivers an incredible price/performance ratio.

➔ The differences between the small and the larger ARM graviton instances is

significantly.

➔ Note: Not every database has a driver for ARM instances, yet.

3.5. Storage Types Performance Impact
Besides VM types, it is also important to have a suitable storage for the database technology

and workload requirements. The performance increase of better, but more expensive storage

solutions, can’t be calculated but easily measured.

Sometimes the results are very surprising due to internal hardware limitations, like in this

example of IONOS cloud, a smaller European Cloud provider.

Target Technology MongoDB on Cloud infrastructure

Databases MongoDB v4.4

Infrastructure IONOS Cloud

Resources Cross-product: HDD and SSD storage with different
VM types (2vCPUs, 8 GB RAM)

Workloads YCSB: simple CRUD, 80% read / 20% writes

10964

7380

11231
11934

4479 4351

0

2000

4000

6000

8000

10000

12000

14000

MongoDB
@ IONOS

Skylake HDD

MongoDB
@ IONOS

Skylake 100
GB SSD

MongoDB
@ IONOS

Skylake 200
GB SSD

MongoDB
@ IONOS

Skylake 400
GB SSD

MongoDB
@ IONOS AMD

HDD

MongoDB
@ IONOS AMD

100 GB SSD

Throughput
[ops/s], higher is better

➔ The HDD delivers better performance at lower price compared to the small SSDs.

➔ This surprising result is due to unlimited IOPS for the cheap HDD compared to limits

for smaller SSDs at IONOS Cloud.

➔ The performance of the larger SSDs is slightly better due to higher IOPS.

4. Why Benchmarking Database-as-a-Service?

In the last three years Database-as-a-Service (DBaaS) have become the future of modern

database management. DBaaS provide a fully managed solution for deployment, operations

and support of various database technologies. DBaaS are offered by database providers, cloud

providers and specialized DBaaS companies.

In one of our market studies we identified 25 DBaaS solutions for MySQL only and over 30

DBaaS solutions for PostgreSQL. In total, we found more than 175 commercially available

DBaaS products, numbers still growing.

DBaaS Performance Does Not Only Depend on the DBMS Technology

In the last few chapters, we saw that the performance of a database installation depends on

the dedicated DBMS technology, the application workload, and the underlying infrastructure

resources.

This means, that Database-as-a-Service products with identical DBMs technology, the same

workload hosted on the same resources show identical performance behavior. Right?

Nah, this is not the case!

The way a DBaaS technology is implemented and orchestrated does further influence the

DBaaS performance.

Let’s compare some performance results.

4.1. MySQL and MariaDB DBaaS: Market Overview
MariaDB is a DBMs technology, based on an early MySQL fork. Both are open-source

databases and many DBaaS products are implemented for these two technologies.

Yet, the performance and of course the performance per costs vary immensely.

Target Technology Relational DBaaS

Databases a) MySQL DBaaS
b) MariaDB DBaaS

Infrastructure a) AWS RDS
b) MS Azure Databases

Resources 8 vCPUs, 64GB RAM, 2-nodes high availability (exception: MS
Azure MariaDB only single-node available)

Workloads YCSB: simple CRUD, 50% read – 50% write operations

5409

8863

3870

5738

8302

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Amazon RDS
MySQL
@ AWS

Amazon RDS
MariaDB
@ AWS

Azure Database
MySQL

@ Azure

Azure Database
MariaDB
@ Azure

Scalegrid RDS
MySQL
@ AWS

Throughput
[ops/s], higher is better

➔ The throughput of MySQL DBaaS highly differ, even if it is the same database

technology. The differences are higher than 40% for similar DBaaS solutions.

➔ The same applies for MariaDB, where AWS RDS outperforms MS Azure’s DBaaS

solution by more than 50% for nearly identical pricing.

➔ Scalegrid’s MySQL DBaaS delivers first class performance and can outperform the

MySQL DBaaS solution of the two hyperscalers.

4.2. MySQL and MariaDB: DBaaS Performance/Cost Comparison
For the example above, a price/performance comparison is more than interesting. The

different cost structures of DBaaS solutions are more than complex and divers. Besides

compute costs, storage, network, backup, and support costs need to be considered for a fair

comparison.

Target Technology Relational DBaaS

Databases a) MySQL DBaaS
b) MariaDB DBaaS

Infrastructure a) AWS
b) MS Azure

Resources 8 vCPUs, 64GB RAM, 2-nodes high availability
(exception: Azure MariaDB only single-node available)

Workloads YCSB: simple CRUD, 50% read – 50% write operations

2.69

4.4

1.96

5.75

2.94

0

1

2

3

4

5

6

7

Amazon RDS
MySQL
@ AWS

Amazon RDS
MariaDB
@ AWS

Azure Database
MySQL

@ Azure

Azure Database
MariaDB
@ Azure

Scalegrid RDS
MySQL
@ AWS

Throughput/Price
[ops/s / $], higher is better

➔ The non-HA-setup of MS Azure Database for MariaDB provides best

price/performance, but is not technical comparable without a reliability node.

➔ Scalegrid’s MySQL DBaaS costs more than MySQL DBaaS from AWS RDS and MS

Azure, but due its great performance it has still a better price/performance ratio.

➔ AWS RDS MariaDB provides more than 60% better price/performance than MySQL.

4.3. A Document DBaaS Market Comparison
For document-oriented DBaaS products many DBaaS products similar to MongoDB Atlas, the

official DBaaS service of MongoDB, can be found on the market.

Target Technology Document-oriented DBaaS

Databases a) MongoDB Atlas
b) AWS DocumentDB
c) Azure CosmosDB
d) Couchbase Capella

Infrastructure a) AWS
b) MS Azure

Resources 8 vCPUs, 32GB RAM, 3-node cluster

Workloads YCSB: simple CRUD, 50% read – 50% write operations

14868

9606

11247

19501

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

MongoDB Atlas
@AWS

AmazonDocumentDB
@ AWS

Azure CosmosDB
@ Azure

Couchbase Capella
@AWS

Throughput
[ops/s], higher is better

➔ The DBaaS products based on the long-existing MongoDB and Couchbase database

implementation outperforms the cloud-native solutions of AWS and Azure.

➔ Couchbase Capella is 30% faster than MongoDB Atlas for this workload and

resource size.

➔ Due to the high DBaaS costs, performance measurements for DBaaS have a high

business value for selecting the right DBaaS and the right resource size.

4.4. Document DBaaS – Also Big Differences for Latency
Not only Throughput and throughput per costs are important KPIs for DBaaS, also the latencies

can vary a lot, depending on the software and hardware implementation.

Target Technology Document-oriented DBaaS

Databases a) MongoDB Atlas
b) AWS DocumentDB
c) Azure CosmosDB
d) Couchbase Capella

Infrastructure a) AWS
b) MS Azure

Resources 8 vCPUs, 32GB RAM, 3-node cluster

Workloads YCSB: simple CRUD, 50% read – 50% write operations

10

6.1
5

20

0

2

4

6

8

10

12

14

16

18

20

MongoDB Atlas
@AWS

AmazonDocumentDB
@ AWS

Azure CosmosDB
@ Azure

Couchbase Capella
@AWS

Read Latency 95%
[ms], lower is better

➔ The cloud-native DBaaS solutions of AWS and Azure show the lowest latency in this

scenario.

➔ Couchbase Capella has over 4x higher latency than CosmosDB and yields

unsatisfying results.

➔ Besides costs and throughput, latency can also be important for applications using

a DBaaS database solution.

4.5. DBaaS vs self-managed DBMS
DBaaS products are a high-tech implementation for databases, but their performance

compared to self-managed databases on similar resources is not identical. When migrating to

a DBaaS product often the resource sizing needs to be adapted.

Target Technology PostgreSQL self-managed vs DBaaS

Databases a) PostgreSQL v13
b) AWS RDS PostgreSQL v13

Infrastructure AWS EC2

Resources a) Small: 2 vCPUs, 8 GB RAM
b) Medium: 4 vCPUs, 16 GB RAM

Workloads YCSB: 50% read, 50% write, simple operations

19447

13696

34976

23489

0

5000

10000

15000

20000

25000

30000

35000

PostgreSQL small
@AWS

PostgreSQL small
@AWS DBaaS

PostgreSQL medium
@AWS

PostgreSQL medium
@AWS DBaaS

Throughput
[ops/s], higher is better

➔ The self-managed databases show 40% higher throughput than the DBaaS product

on similar AWS resources in this scenario.

➔ One reason could be, that the DBaaS product has production features like backup

and security, which are influencing the performance.

➔ Note: When migrating to DBaaS it is uncertain which resource size is necessary.

Conclusion
Wow, that are a lot of data points you fought your way through.

R – E – S – P – C –T – ! – ! – !

I hope you found some interesting and relevant metrics for your daily work. At least, you saw

a lot of differences and surprising results. In many use cases performance measurements can

help you to make a good data-driven decision.

If you are interested in doing measurements on your own, or struggling with some questions,

or have concerns regarding the results., feel free to reach out to me.

Best

Daniel & The benchANT Team

daniel.seybold@benchant.com

mailto:daniel.seybold@benchant.com

About the Authors – The benchANT Team
This document is based on the work of the benchANT team. All insights come from the daily

work in performance testing for clients and research. benchANT is specialized on database

and infrastructure benchmarking to deliver data-driven technology recommendations and

optimization suggestions for existing IT applications.

Dr. Jörg Domaschka

Jörg has a doctorate in computer science and has spent

more than 15 years researching cloud computing and

DevOps. His penchant for avoiding repetitive tasks drives

him to develop modern, automated solutions for the daily

problems in IT departments.

Dr. Daniel Seybold

Dr. Daniel Seybold gained extensive experience with

distributed systems and databases during his doctoral

studies. The research results lay the foundation for

benchANT's goal of providing companies with an

objective performance assessment of cloud and

database services.

Jan Ocker

After studying physics, Jan gained experience in IT project

management and data analytics before dedicating

himself to (cloud) cost calculations and the Database-as-

a-service market at benchANT. Jan attaches great

importance to efficiency - both in IT applications and in the

daily workflow.

Glossary

CRUD: CRUD are the simple database operations Create-Read-Update-Delete. In our context it

describes a database workload type, which only consists of these simple database operations

without joins, transactions or aggregation.

DBaaS: Database-as-a-Service (DBaaS) are fully-managed database management systems

with deployment features, management tooling and support. They are offered by database and

cloud providers to simplify database administration.

OLAP: On-Line-Analytical-Processing (OLAP) describes a workload type, which consists of

complex database queries, usually used in analytics and business intelligence.

OLTP: On-Line-Transaction-Processing (OLAP) describes a workload type, which consists of

relational and transactional database queries - similar to classical ERP and eCommerce

applications.

Sysbench: Sysbench is a widely used open-source benchmarking suite, not only for databases,

but also for CPU and memory testing. For database performance measurements, the

Sysbench can create a transactional workload. More information can be found here:

https://github.com/akopytov/sysbench

TPC-C: The TPC-C is a standardized benchmarking from the TPC council for online transaction

processing (OLTP). More information can be found here: https://www.tpc.org/tpcc/

TPC-h: The TPC-h is a standardized benchmarking from the TPC council for online analytics

processing (OLAP). More information can be found here: https://www.tpc.org/tpch/

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source benchmarking suite. It

is widely used to create synthetic CRUD workloads for performance measurements. More

information can be found here: https://github.com/brianfrankcooper/YCSB and here

https://benchant.com/de/blog/ycsb.

https://github.com/akopytov/sysbench
https://www.tpc.org/tpcc/
https://www.tpc.org/tpch/
https://github.com/brianfrankcooper/YCSB
https://benchant.com/de/blog/ycsb

Disclaimer

All performance measurements were done with the automated benchmarking framework of

benchANT in an automated, reliable and producible way in the last quarters.

All meta and raw data can be found on GitHub: https://github.com/benchANT

Please notify us, if you can prove some wrong measurements, we will update this document

properly.

Version history
• V1 - 2023-08: release first version

https://github.com/benchANT

